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Abstract
Autism and autism spectrum disorders (ASD) refer to a range of conditions
characterized by impaired social and communication skills and repetitive
behaviors caused by different combinations of genetic and environmental
influences. Although the pathophysiology underlying ASD is still unclear, recent
evidence suggests that immune dysregulation and neuroinflammation play a role
in the etiology of ASD. In particular, there is direct evidence supporting a role for
maternal immune activation during prenatal life in neurodevelopmental
conditions. Currently, the available options of behavioral therapies and
pharmacological and supportive nutritional treatments in ASD are only
symptomatic. Given the disturbing rise in the incidence of ASD, and the fact that
there is no effective pharmacological therapy for ASD, there is an urgent need for
new therapeutic options. Mesenchymal stem cells (MSCs) possess
immunomodulatory properties that make them relevant to several diseases
associated with inflammation and tissue damage. The paracrine regenerative
mechanisms of MSCs are also suggested to be therapeutically beneficial for ASD.
Thus the underlying pathology in ASD, including immune system dysregulation
and inflammation, represent potential targets for MSC therapy. This review will
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focus on immune dysfunction in the pathogenesis of ASD and will further
discuss the therapeutic potential for MSCs in mediating ASD-related
immunological disorders.
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Core tip: Autism spectrum disorder (ASD) is a complex, behaviorally defined disorder
characterized by severe impairments in social communication and repetitive behavior.
Because of an incomplete understanding of the pathology of ASD, available treatment
options in ASD are only symptomatic. We discuss the role of immune dysfunction in the
etiology of ASD and function of mesenchymal stem cells. We summarize the pre-clinical
and clinical evidence for mesenchymal stem cell therapy in ASD and suggest that more
basic experiments are needed to better understand the therapeutic mechanisms of
mesenchymal stem cells in ASD.
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INTRODUCTION
Autism  spectrum  disorder  (ASD)  is  a  complex,  behaviorally  defined  disorder
characterized by severe and pervasive impairments in social communication and
repetitive behavior.  According to the 5th edition of the diagnostic and statistical
manual of mental disorders, ASD is diagnosed in individuals exhibiting three social
communication  and  interaction  deficits,  at  least  two  symptoms  of  restricted  or
repetitive behavior/interests/activities, and a variety of specific symptoms classified
within  each  diagnostic  category.  ASD  is  one  of  the  most  common  psychiatric
disorders affecting 1 in 59 children aged 8 years based on the most recent estimates
calculated by the United States Center of Disease Control[1]. There has recently been a
steady and highly significant rise in the estimated prevalence of ASD, due both to a
greater awareness of the disorder and broader diagnostic criteria[1,2]. ASD is a complex
and heterogeneous psychiatric disorder, and early studies suggest a strong genetic
component to autism. For example, identical twin studies estimate concordance for
ASD to be between 70% and 90%[3-5]. However, growing evidence suggests that these
previous studies may have overestimated the genetic component of autism because
the heritability of autism and shared twin environment were similar[6]. Meanwhile,
large  numbers  of  ASD candidate  genes  have  been uncovered by whole-genome
linkage studies, gene association studies, copy number variation screening, and SNP
analysis[7]. Many of the candidate genes, such as reelin (RELN)[8], SH3 and multiple
ankyrin repeat domains 3 (SHANK3)[9], neuroligin 3 (NLGN3), NLGN4X[10], MET[11],
gamma-aminobutyric  acid  type-A receptor  beta3  subunit  (GABRB3)[12],  oxytocin
receptor (OXTR)[13], serotonin transporter (SLC6A4)[14], and phosphatase and tensin
homolog (PTEN)[15] have been demonstrated to be associated with ASD (Figure 1).
Furthermore, single gene mutations cause several ASD-related syndromes, including
Rett’s  syndrome (methyl  CpG binding protein 2,  MECP2)[16],  Fragile  X (fragile  X
mental retardation 1, FMR1)[17], and tuberous sclerosis (TSC1 or TSC2)[18]. Proteins
within the phosphoinositide-3-kinase pathway, including MET, PTEN, TSC1, and
TSC2 have a major role in regulating interleukin (IL)-12 production and are involved
in both innate and adaptive immunity[19]. Additionally, some of the ASD candidate
genes, including the major histocompatibility complex class genes are traditionally
thought to play a role exclusively in the immune system[20] (Figure 1). Even with the
recent advances in identifying candidate genes involved in ASD, all identified genes
account for < 20% of ASD cases[21]. Moreover, a number of these genetic risk factors
are present in individuals without ASD suggesting additional risk factors are also
necessary.  For  example,  recent  studies  provided  evidence  for  altered  DNA
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methylation in ASD[22,23]. Thus through epigenetic mechanisms, exposure to specific
environmental factors may be responsible for triggering the development of ASD in
some individuals  (Figure  1).  A  variety  of  environmental  risk  factors  have  been
identified to increase ASD risk including: maternal immune activation (MIA)[24-27];
prenatal or perinatal exposure to valproic acid (VPA)[28,29]  and selective serotonin
reuptake inhibitors (SSRI)[30-32]; early life exposure to stress[33,34]; advanced parental age,
zinc deficiency, abnormal melatonin synthesis[35]; and environmental toxins[36] (Figure
1).  MIA and maternal exposure to drugs such as SSRI and VPA are of particular
interest  given evidence from clinical  and animal  studies  supporting the role  for
immune dysfunction and inflammation in the etiology of ASD.

The first part of this review discusses immune-related genetic and environmental
risk factors for ASD, from both human and animal studies, and the role of immune
activation  in  the  etiology  of  ASD-related  behavioral  and  neuropathological
abnormalities. Understanding how immune abnormalities are involved in the etiology
of ASD will provide a valuable starting point for further work towards potential stem
cell therapies for ASD. There is great potential for the use of stem cells in the future of
molecular  and  regenerative  medicine.  Amongst  the  various  stem cell  subtypes,
mesenchymal stem cells (MSCs) are the most promising clinical candidate for the
treatment  of  several  diseases  related  with  inflammation,  tissue  damage,  and
subsequent regeneration and repair[37]. Therefore, the second part of this review will
focus on underlying treatment mechanism of MSCs in ASD.

EVIDENCE FOR IMMUNE ABNORMALITIES IN ASD

Immune-related genetic risk factors for ASD
Major histocompatibility complex molecules:  Major histocompatibility complex
(MHC) occurs on the short arm of chromosome 6 and is divided into three regions;
MHC class I, II, and III (MHC-I, MHC-II, and MHC-III). The human leukocyte antigen
refers to the MHC locus in humans, which contains a large number of genes involved
in integrating the innate and adaptive immune system. MHC-I molecules are found
on all nucleated cells, and present epitopes to T-cell receptor proteins on cytotoxic
CD8+  T  lymphocytes[38].  As  a  result  of  MHC-I  presentation,  cytotoxic  CD8+  T
lymphocytes become activated and play an important role in the clearance of bacterial
and viral infections. While MHC-I molecules have long been known for their primary
role in adaptive immunity, they also bind to inhibitory receptors on natural killer
(NK) cells, which are part of the innate immune system[39,40]. Interestingly, some recent
studies have demonstrated novel roles of MHC-I molecules in regulating synaptic
function, plasticity of the cerebral cortex, and cortical glutamatergic connectivity[41-43].
Several lines of evidence have indicated that abnormalities in the balance between
excitatory  (glutamate-mediated)  and  inhibitory  (gamma-Aminobutyric  acid-
mediated) neurotransmission may be a key pathological mechanism in autism[44-46].
MHC  may  also  function  in  social  communication  and  the  formation  of  social
memories[47,48].  Moreover,  the class one allele of human leukocyte antigen-A2, an
important  MHC-I  antigen  presenting  molecule,  is  linked to  higher  incidence  of
autism[49].  Thus,  it  is  interesting  to  speculate  that  human  leukocyte  antigen
polymorphisms might contribute to the abnormal social communication in ASD by
altering excitatory/inhibitory balance in the brain.

Unlike  MHC-I,  MHC-II  molecules  are  expressed  exclusively  by  the  antigen
presenting cells, including B cells, dendritic cells, and macrophages, in response to
inflammation  signals[50].  In  general,  helper  CD4+  T  lymphocytes  can  recognize
exogenous antigen presented on MHC-II through T cell receptors. Once activated,
helper CD4+ T lymphocytes promote B cell differentiation and antibody production
and secrete many cytokines and chemokines.  MHC-II  alleles are associated with
autoimmune disease[51], and interestingly, many studies report that a family history of
autoimmune  disease  is  a  significant  risk  factor  for  ASD[52].  Moreover,  in  the
developing and adult brain, MHC-II molecules are expressed mainly on microglia,
astrocytes, and perivascular monocytes[53-55].  In vitro  experiments suggest that the
expression of MHC-II differs in astrocytes and microglia. For example, glutamate, an
excitatory neurotransmitter abundantly present in the central nervous system (CNS),
inhibits expression of MHC-II induced by interferon-gamma (IFN-γ) on astrocytes,
but not on microglia cells[54]. Hellendall and Ting[56] reported that cytokine (IFN-γ)
induced expression of MHC-II on astrocytes is mediated through a cAMP and protein
kinase C-dependent pathway. Whilst a mitogen-activated protein kinase (MAPK)
signal pathway including extracellular signal-regulated kinases 1/2, c-Jun N-terminal
kinase, and p38 MAPK and cyclic AMP responding element binding protein, may be
involved  in  lipopolysaccharide  (LPS)-activated  microglia[57].  Altered  microglial
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Figure 1

Figure 1  Genetic and environmental risk factors for autism spectrum disorders. Genetic risk factors for autism spectrum disorder (ASD) including: important
candidate genes, immune-related genes (such as MHC), epigenetics, and family history of autoimmune disease. Prenatal infection, maternal exposure to drugs,
prenatal stress, advanced parental age, zinc deficiency, and abnormal melatonin synthesis are important environmental risk factors for ASD. ASD children exhibit
social communication deficits and repetitive behavior. Brain dysfunction and physiological abnormalities are observed in ASD patients and animal models. RELN:
Reelin; GABRB3: Gamma-aminobutyric acid type-A receptor beta3 subunit; OXTR: Oxytocin receptor; SLC6A: PTEN: Phosphatase and tensin homolog; FMR1:
Fragile X mental retardation 1; TSC1/2: Tuberous sclerosis 1/2; MECP2: Methyl CpG binding protein 2; MHC: Major histocompatibility complex; AT: Autoimmune
thyroiditis; RA: Rheumatoid arthritis; MIA: Maternal immune activation; LPS: Lipopolysaccharide; SSRI: Selective serotonin reuptake inhibitors; VPA: Valproic acid.

activation in the brain is accompanied by the behavioral phenotype of autism (e.g.,
anxiety,  abnormal  social  interaction,  and  learning  impairment)  in  MIA  animal
models[58,59]. Meanwhile, an increased average microglia somal volume in white matter
and microglial density in grey matter has been reported in post-mortem studies of
ASD[60,61]. Furthermore, several studies have reported that the DRβ1*04 allele of the
MHC-II region is associated with ASD[62-64].

The MHC-III region encodes a cluster of proteins with immune functions including
complement proteins (C2 and C4), tumor necrosis factor (TNF)-α, and heat shock
proteins. The CB4 null allele of MHC-III has been implicated in ASD[65]. In addition,
strong evidence has demonstrated that MHC-III molecules play an important role in
brain development and function. For example, TNF-α enhances dendrite growth and
synaptic connectivity, balances neuronal excitation and inhibition, and alters synaptic
plasticity[66-68].

Clearly,  the  MHC  molecules  play  a  vital  role  in  the  formation,  refinement,
maintenance, and plasticity of the brain. Thus, disruptions in the expression of MHC
molecules  in  the  developing  brain  induced  by  mutations  and/or  immune
dysregulation might contribute to the altered brain function and endophenotypes of
ASD.

Environmental risk factors in ASD
MIA and ASD: Epidemiological studies indicate that generalized activation of the
maternal immune system caused by maternal infection during prenatal life is a strong
risk factor for ASD[69-72]. Consistent with these reports, our research group and others
have demonstrated non-specific induction of MIA using viral analogues such as the
double stranded RNA poly(I:C), and this is sufficient to bring about neuropathologic,
neuroimaging,  and  behavioral  phenotypic  changes  in  the  offspring,  which  are
analogous to those observed in human ASD[22,24-26,73,74]. In addition, MIA can be induced
in both rodent and non-human primate models with influenza[75], IL-6[76], maternal
anti-fetal  brain  antibody[77],  and  LPS[78].  Altogether,  these  large  epidemiological
findings and animal experiments point to a primary role for MIA in the etiology of
ASD.

It is now well understood that shortly after maternal injection with poly(I:C), pro-
inflammatory cytokines, including IL-1β, IL-6, and TNF-α are elevated in the maternal
bloodstream,  placenta,  and  fetal  brain[59,79].  IL-6  in  particular  may  be  a  crucial
immunological mediator of the link between maternal immune activation and altered
adult brain functions. This is because, unlike IL-1β and TNF-α, IL-6 may cross the
placenta and enter the fetal brain after MIA[80,81]. Indeed, maternal IL-6 injection is
sufficient to precipitate offspring prepulse inhibition and latent inhibition deficits
usually consequent on poly(I:C) exposure[76]. Simultaneous injection of an anti-IL-6
antibody can prevent  behavioral  maldevelopment  and gene expression changes
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caused by MIA[76]. More convincingly, IL-6 knock-out mice are resistant to the effects
of prenatal poly(I:C) exposure[76]. There is also evidence that maternal IL-6 dependent
activation of  the Janus kinase/signal  transducer and activator  of  transcription 3
pathway in the placenta demonstrates a direct transfer of the MIA response from
maternal  to  fetal  cells [79].  Interestingly,  pathways  downstream  of  the  Janus
kinase/signal transducer and activator of transcription 3 signaling including the
MAPK cascade that contains Ras/Raf, mitogen-activated protein kinase kinase 1, and
phosphorylated extracellular signal-regulated kinases, have been demonstrated to
contribute  to  the  fetal  brain  dysfunction  observed  in  the  MIA  mice  model[82].
Moreover, several recent studies from our group and others report that MIA induces
epigenetic  alterations  in  the  brain,  suggesting that  stable  DNA methylation is  a
plausible  mechanism  underlying  the  disruption  of  gene  transcription,  brain
development,  and  behavioral  functions  in  response  to  immune  challenge  in
utero[22,83-85].

Maternal  exposure  to  SSRI  and  ASD:  Depression  during  pregnancy  is  not
uncommon; the prevalence is reported to be around 7%-12%[86,87]. SSRIs are the most
frequently prescribed antidepressants during pregnancy because they are thought to
be relatively safe for the fetus compared to other antidepressants. However, recent
meta-analyses have suggested that SSRI exposure during pregnancy increases the risk
for preterm birth and low birth weight[88], congenital malformation[89], and unfavorable
effects on language or behavioral development in children[90].  SSRIs can cross the
placenta  and  are  able  to  reach  the  fetal  brain,  which  might  have  long-term
neurobehavioral  and  neurodevelopmental  consequences  in  the  offspring[91].  An
imbalance  of  serotonin  (5-HT)  in  prenatal  life  may  be  a  risk  factor  for  ASD.
Experimental investigations have demonstrated that SSRIs have the potential to cause
changes in brain circuitry and maladaptive behaviors, due to elevated levels of 5-
HT[92].  In utero,  exposure to an SSRI during a key developmental window lead to
dysfunctional 5-HT signaling, loss of 5-HT terminals, and behavioral abnormalities in
animals[92]. 5-HT levels are reported to be decreased in ASD patients[93]. Additionally,
several clinical studies have reported that the use of SSRIs during pregnancy increases
the risk of ASD in children[30,94-96]. Although several reviews and meta-analyses have
recently been published addressing this issue, there are conflicting conclusions when
controlling for maternal psychiatric disease and other confounding factors, such as
genetic  syndromes  and congenital  anomalies  that  are  associated  with  ASD-like
behavior[97-99].  To  answer  this  question  more  accurately  further  investigation  is
warranted, in particular focusing on maternal psychiatric conditions and/or SSRI
treated and untreated siblings.

Given that 5-HT plays a role as an immunomodulator, it is possible that prenatal
SSRI exposure may contribute to the pathophysiology of ASD through interactions
between an altered serotonergic system and the immune system. 5-HT modulates the
function of a wide range of immune cells, including macrophages, NK cells, dendritic
cells,  T-cells,  and B-cells  through binding to 5-HT receptors  during the immune
response[100]. In addition, there is an association between serum 5-HT levels and the
presence of  certain MHC genes  in  ASD children[101].  It  is  possible  that  abnormal
synaptic or extracellular levels of 5-HT may affect the immune system, triggering
abnormalities as seen in ASD. However, a direct experimental investigation is needed
to verify the 5-HT-mediated neuro-immune crosstalk in ASD.

Valproic acid and ASD: VPA has been used for the treatment of seizures and mood
swings for more than 30 years. Several lines of clinical evidence have suggested that
maternal exposure to VPA is associated with increased risk of ASD[102-104]. Our research
group and others  have  shown that  rodents  exposed to  VPA prenatally  develop
behavioral traits and neurochemical alterations that may be relevant to ASD[28,105].
Interestingly, prenatal exposure to VPA on gestation day 9 before neural tube closure
disrupts  the  maturation  of  serotonergic  neurons  thereby  interrupting  early
development of the serotonergic system[106]. In addition, prenatal exposure to VPA on
gestation  day  9  results  in  an  elevated  level  of  5-HT  in  the  hippocampus  and
hyperserotonemia in blood[107]. Furthermore, Dufour-Rainfray et al[108] reported that
decreased 5-HT levels in the hippocampus of rats exposed to VPA at gestation day 9
may be associated with behavioral impairments.  Therefore,  these results suggest
prenatal  VPA  exposure  may  play  a  role  in  the  development  of  ASD  through
disruption of the normal development of the serotonin system. However, further
research is required to elucidate the mechanisms by which this occurs. Clinical use of
VPA is  often associated with  hepatotoxicity  and the  pathology of  VPA-induced
hepatotoxicity  has  been  studied  extensively.  Oxidative  stress  and  hepatic
inflammation  are  apparent;  elevated  levels  of  nuclear  NF-κB  in  the  liver  is
accompanied by the induction of IL-1β, IL-6, and TNF-α, and these play important
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roles in the pathology of VPA-induced hepatotoxicity[109]. Moreover, moderate or high
doses of prenatal exposure to VPA can also induce toxicity and even death in the
offspring in animals[28]. However, the underlying mechanism of VPA-induced toxicity
in  the  CNS  is  not  clear  yet.  We  suspect  that  oxidative  stress  and/or
neuroinflammation may also play an important role in the altered brain function
observed  in  prenatal  exposure  to  VPA.  Further  study  is  required  to  improve
understanding of the mechanisms by which prenatal VPA exposure may induce ASD,
through investigation of the serotoninergic system and immune responses in the fetal
brain.

Inflammation in ASD
A consistent body of data has suggested that there is active inflammation in the CNS
in ASD patients. Increased activation of astroglia and microglia has been found in the
postmortem brain and cerebrospinal fluid samples in ASD patients[61]. In addition,
elevated macrophage chemoattractant protein-1 and tumor growth factor-β1 derived
from  neuroglia  are  the  most  prominent  cytokines  in  the  brain  samples  of  ASD
patients;  marked  expression  of  a  prominent  inflammatory  cytokine  profile,
macrophage  chemoattractant  protein-1,  IL-6,  IL-8,  and  IFN-γ  is  shown  in  the
cerebrospinal fluid of ASD patients[61]. Another study further demonstrates that pro-
inflammatory cytokines including TNF-α, IL-6, IL-8, granulocyte macrophage-colony
stimulating factor, and IFN-γ (Th1 cytokines) are significantly increased in the brains
of ASD patients[110]. However, there is no increase in IL-4 or IL-5 (Th2 cytokines), thus
Th1/Th2 ratio is significantly raised in ASD patients, suggesting that the Th1 pathway
is activated in ASD[110].

A number of studies have shown that IL-1β, IL-12, TNF-α, and IFN-γ are increased
in the peripheral blood of autistic patients[111]. Two recent large case-control studies
comparing ASD and typically developing children have further confirmed increased
levels of plasma cytokines including the Th1-like IL-12p40 and pro-inflammatory
cytokines IL-1β, IL-6, IL-8, and granulocyte macrophage-colony stimulating factor[112],
and chemokines, including MCP-1, regulated on activation normal T cell expressed
and secreted, and eotaxin[113]. These elevated levels of cytokines and chemokines are
associated with behavioral and cognitive impairments[112,113].

POTENTIAL FOR MSCS IN THE TREATMENT OF ASD

MSCs
MSCs are a population of progenitor cells of mesodermal origin found principally in
the  bone  marrow,  which  possess  the  capacity  of  self-renewal  and  also  exhibit
multilineage differentiation[114,115]. In addition to bone marrow, MSC populations can
also be obtained readily from adipose tissue[116], placenta[117], skin[118], umbilical cord
blood[119],  umbilical  cord perivascular  cells[120],  umbilical  cord Wharton’s  jelly[121],
amniotic  fluid[122],  synovial  membrane[123],  breast  milk[124],  alveolar  epithelium[125],
myocardium[126],  menstrual  blood[127],  and  endometrium[128]  (Table  1).  MSCs  are
relatively easy to  isolate  and expand in culture and capable  of  self-renewal  and
differentiation, making them a promising treatment option for a variety of clinical
conditions. Although the multipotency of MSCs is demonstrated in vitro[129], this is still
not definite in vivo.  Until now, it is also still unclear whether MSCs isolated from
different tissue sources have similar therapeutic potentials[130].  Furthermore,  it  is
uncertain whether systematic delivery (i.e., intravenous) of MSCs is sufficient to reach
the  brain  as  compared  to  direct  implantation  of  MSCs[131,132].  Though  intranasal
application of cells provides an alternative, non-invasive method to deliver MSCs
directly into the CNS[133]. At present, neither intravenous nor direct injection of MSCs
have been able to yield consistent clinical results because infused cells exhibit limited
survival and transient functionality in host tissues[134-136].

As  well  as  the  ability  to  self-renew  and  differentiate,  MSCs  can  also  secrete
immunomodulatory,  anti-apoptotic,  anti-inflammatory,  pro-angiogenic,  pro-
mitogenic, and antibacterial molecules that contribute to immunomodulatory and
trophic effects[137]. Thus recent recognition of the immunomodulatory functions of
MSCs may result in the exploration and development of new therapies for ASD.

Effects of MSCs on the nervous system in health and ASD
Although the mechanism of action of MSCs on the nervous system remains largely
unknown,  recent  research  suggests  that  neuroprotection,  neurogenesis,  and
synaptogenesis  may  be  involved[138].  Genetic  findings  linking  ASD  to  synapse-
associated genes, such as SH3 and multiple ankyrin repeat domains 3 (SHANK3) and
mutations of other synaptic cell adhesion molecules, suggest that ASD may result, at

WJSC https://www.wjgnet.com February 26, 2019 Volume 11 Issue 2

Liu Q et al. Therapeutic potential for MSCs in ASDs

60



Table 1  Tissue sources of mesenchymal stem cells

Tissue sources MSCs Ref.

Bone marrow BM-MSCs
[115]

Adipose Ad-MSCs
[116]

Placenta Pl-MSCs
[117]

Skin S-MSCs
[118]

Umbilical cord blood UCB-MSCs
[119]

Umbilical cord perivascular cells UCPVC-MSCs
[120]

Umbilical cord Wharton’s jelly WJ-MSCs
[121]

Amniotic fluid AF-MSCs
[122]

Synovial membrane SM-MSCs
[123]

Breast milk M-MSCs
[124]

Alveolar epithelium (lung) AE-MSCs
[125]

Myocardium (heart) Myo-MSCs
[126]

Menstrual blood Men-MSCs
[127]

Endometrium En-MSCs
[128]

MSCs: Mesenchymal stem cells; BM-MSCs: Bone marrow MSCs; Ad-MSCs: Adipose MSCs; UCB-MSCs:
Umbilical cord blood MSCs.

least  partially,  from disruption  of  synapse  function  and plasticity[139].  MSCs  act
through several possible mechanisms to regulate synaptic function and plasticity, that
is,  secreting survival-promoting growth factors (e.g.,  brain-derived neurotrophic
factor;  nerve  growth  factor),  sustaining  synaptic  plasticity,  restoring  synaptic
transmitter  release  by  providing  local  re-innervations,  integrating  into  existing
synaptic  networks,  and  re-establishing  functional  afferent  and  efferent  connec-
tions[138,140,141].

Effects of MSCs on the immune system and autoimmune diseases in health and
ASD
There is a considerable body of literature documenting the effects of MSCs on the
immune system.  MSCs  act  on  both  the  adaptive  and innate  immune  system by
suppressing  pro-inflammatory  activities,  inhibiting  dendritic  cell  maturation,
polarizing macrophages towards anti-inflammatory M2-like state,  promoting the
generation of regulatory T cells via IL-10, suppressing proliferation and cytotoxicity of
NK cells, and reducing B cell activation and proliferation. These functions of MSCs on
the  immune  system have  been  covered  extensively  in  several  reviews[142-146].  As
discussed above in this review, ASD patients show an imbalance between Th1 and
Th2, as well as NK cells, overproduction of pro-inflammation, and reduction of anti-
inflammation.  MSCs immunoregulatory effects  have the potential  to restore this
immune imbalance, inhibit TNF-α, IL-1β and IFN-γ production, and increase IL-10
and IL-4 levels[147].

In addition, MSCs are capable of crossing the blood-brain-barrier and migrating to
sites of tissue injury and inflammation[148,149].  MSCs act through Toll-like receptor
(TLR) signaling to initiate  the clearance of  pathogens and promote the repair  of
injured tissue.  These TLRs respond to so-called “danger signals” from microbial
invasion,  such as double-stranded RNA (dsRNA),  LPS,  and heat  shock proteins,
triggering  intracellular  signaling  pathways.  This  results  in  the  induction  of
inflammatory cytokines, type I IFNs, and upregulation of co-stimulatory molecules
leading to the activation of the adaptive immune response[150]. As mentioned above,
prenatal exposure to poly(I:C),  a synthetic analog of dsRNA, elicits a plethora of
intracellular signaling pathways through binding to TLR3 in a MIA model of ASD[151],
whilst LPS elicits distinct molecular profiles through binding to TLR4[152]. In TLR3-
and  TLR4-mediated  signaling  pathways,  toll–IL-1  receptor  domain-containing
adaptor  inducing  IFN-β  (TRIF)  leads  to  activation  of  the  transcription  factors
interferon regulatory factor 3 (IRF3), which are responsible for induction of IFN-β[153]

(Figure 2A). TRIF-dependent signaling pathway, both downstream of TLR-3 and TLR-
4, also leads to activation of MAPKs and production of cytokines, such as IL-6 and
TNF-α[153,154].  Interestingly,  TLRs  may  polarize  MSCs  toward  pro-inflammatory
(MSC1) or anti-inflammatory (MSC2) phenotypes. For example, TLR4 (LPS) priming
results in production of pro-inflammatory cytokines such as IL-6 or IL-8 (MSC1),
while  TLR3  (dsRNA,  ployI:C)  priming  induces  secretion  of  anti-inflammatory
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molecules  such  as  IL-10,  IL-4,  indoleamine  2,3-dioxygenase,  or  prostaglandin
(MSC2)[155,156]  (Figure 2B).  These polarizing effects of TLR priming depend on the
ligand concentration, timing, and kinetics of activation. This may also explain the
contradictory  results  obtained  so  far  regarding  the  effects  of  TLRs  on
immunomodulation by MSCs[155,156]. However, in contradiction to the reported LPS
polarizing process (MSC1 phenotype) observed in vitro, several studies have reported
beneficial  effects  of  MSC  treatment  in  animal  models  of  LPS-induced  tissue
injury[157-159].  Therefore,  the in vivo  modulation of  MSCs by TLR ligands deserves
further  investigation and clarification.  In  particular,  the  MIA model  of  prenatal
exposure  to  poly(I:C)  represents  a  good  animal  model  in  which  to  explore  the
underlying mechanism of MSC treatment in ASD.

Numerous autoimmune conditions have been associated with ASD, including
autoimmune thyroiditis, rheumatoid arthritis, ulcerative colitis, celiac disease, and
type 1 diabetes[160] (Table 2). The potential use of MSC therapy has been investigated
in  many  of  these  conditions.  Preclinical  experiments  and  clinical  trials  have
demonstrated the safety and efficacy of MSC therapy in rheumatoid arthritis animal
models  and patients[161].  In addition,  MSC therapy has been reported to increase
regulatory  T  cells,  restore  Th1/Th2  balance  in  blood  and  induce  apoptosis  of
infiltrated  leukocytes  in  pancreatic  islet  cells  in  mice  with  type  1  diabetes[162].
However, in order to translate this finding from bench to bedside, further in-depth
mechanistic  studies  of  the  therapeutic  effects  of  MSCs  on  type  1  diabetes  are
warranted. Recent pre-clinical research has shown the restorative effect of MSCs in
mice  with  autoimmune  thyroiditis  through  the  MAPK  signaling  pathway[163].
Furthermore, graft-versus-host-disease and multiple sclerosis have been targeted for
MSC treatment in both animal experiments and clinical trials[164-167] (Table 2). However,
the  use  of  MSCs in  the  treatment  of  graft-versus-host-disease  has  failed to  give
consistent results in animal experiments[167].

Pre-clinical and clinical evidence for MSC therapy in ASD
To date, only a few pre-clinical studies have demonstrated the therapeutic potential of
MSC treatment in animal models of ASD. Ha et al[168] reported that adipose MSCs are
transplanted intraventricularly into the brains of neonatal fetal pups at a very early
stage. This early intervention reduces repetitive behavior and anxiety, and improves
social deficits in mice prenatally exposed to VPA through the rescue of decreased IL-
10  and  vascular  endothelial  growth  factor  levels  together  with  upregulation  of
reduced PTEN proteins in the brain. In addition, it has been demonstrated that by
promoting the maturation of newly formed neurons in the granular cell layer of the
dentate  gyrus,  MSC  transplantation  restores  post-developmental  hippocampal
neurogenesis  in  VPA-exposed mice[169].  This  is  associated with improvements  in
cognitive and social behavior 2 wk after transplantation of the MSCs and thus may be
related to the modulation of hippocampal neurogenesis[169].

A widely  accepted mouse model  of  ASD is  the  BTBR T+,  tf/J  (Black and Tan
Brachyury,  BTBR) inbred mouse strain,  which display autistic-like behavior and
neuroanatomical abnormalities, including absence of corpus callosum and reduced
hippocampal commissure, analogous to the core endophenotype of autism[170-172]. It has
been shown that intracerebroventricular transplant of human MSCs into BTBR mice
results  in  a  reduction  of  stereotypical  behaviors  and  cognitive  rigidity  and  an
improvement in social behavior[173]. Furthermore, elevated brain-derived neurotrophic
factor levels and hippocampal neurogenesis were detected in the MSCs-transplanted
BTBR mice[173]. This finding then promoted an investigation of the behavioral effects of
transplanted MSCs, which were induced to secrete a higher amount of neurotrophic
factors  (NurOwn®)  in  BTBR mice[174].  This  study demonstrated  NurOwn®[175]  are
superior  to  MSCs  without  induced  neurotrophic  factors  in  several  aspects.  In
particular, NurOwn® contains 2 and 5 fold levels of brain-derived neurotrophic factor
and glial cell-derived neurotrophic factor, respectively, compared to MSCs from the
same donor[176].  Moreover, NurOwn®  transplantation increases male-female social
interaction, decreases repetitive behavior (changes which can be sustained for 6 mo
after  treatment),  and  improves  cognitive  flexibility  in  BTBR mice[174].  Exosomes
derived from MSCs serve as the main mediators of the therapeutic effect of MSC, with
an involvement in repairing damaged tissues, suppressing inflammatory responses,
and modulating the immune system[177,178]. Their potential as a surrogate of therapeutic
MSCs has been widely explored. Recently, it has been shown that BTBR mice treated
with  exosomes  derived  from  MSCs  via  intranasal  administration  present  with
significant  behavioral  improvements  in  social  interaction  and  ultrasonic
communication and reduced repetitive behavior. Interestingly, BTBR mothers that
were treated with exosomes derived from MSCs showed improvements in maternal
behaviors such as pup retrieval behavior[179].

Although there have been few pre-clinical studies of MSC therapy for ASD, several
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Figure 2

Figure 2  Poly(I:C)-toll-like receptor 3 signaling pathway and polarization of mesenchymal stem cells. A: Poly(I:C)-induced toll-like receptor 3(TLR3) signaling
pathway. TLR3 recognizes dsRNA analog poly(I:C) in the endosomes and initiates signaling by TRIF, leading to activation of IRF3 and induction of IFN-β. TRIF-
dependent signaling pathway also induces activation of MAPKs and AP-1, and culminates in the production of inflammatory cytokines, such as IL-6 and TNF-α; B:
Polarization of MSCs into MSC1 (M1 type with a proinflammatory response) and MSC2 cells (M2 type with an anti-inflammatory response) as a result of activation of
TLR3 and TLR4 respectively. Poly(I:C): polyinosinic–polycytidylic acid; dsRNA: Double-stranded RNA; TLR3: Toll-like receptor 3; TLR4: Toll-like receptor 4; TRIF:
Toll–IL-1 receptor domain-containing adaptor inducing IFN-β; IRF3: Interferon regulatory factor 3; MAPKs: Mitogen-activated protein kinases; AP1: Activator protein 1;
IFN-β: Interferon β; IL-6: Interleukin 6; TNF-α: Tumor necrosis factor α; LPS: Lipopolysaccharide.

clinical  trials  on  human  have  been  conducted.  Lv  et  al[180]  performed  a  non-
randomized,  open-label,  controlled,  proof-of-concept  clinical  trial  to  exam  the
treatment,  safety  and efficacy of  umbilical  cord blood MSCs and/or  cord blood
mononuclear  cells  in  children with autism.  At  24  wk post-treatment,  significant
reductions in symptom severity are observed with the greatest improvement in the
combined  group  (umbilical  cord  blood-MSCs  +  cord  blood  mononuclear  cells),
suggesting a synergic effect of dual therapy[180]. There is no significant safety issue
related to the treatment and no observed severe adverse effects.

Meanwhile, Sharma et al[181] conducted another open-label proof of concept study
and reported on the use of intrathecal transplantation of autologous bone marrow
mononuclear cells that contain MSCs in 32 patients with ASD. This study included
children as well as adults with ASD (age 3-33). Most of the patients showed improved
scores in various behavioral scales after a 26 mo follow up, including improvements
in social relationships and reciprocity, emotional responsiveness, speech, language,
communication,  behavior  patterns,  sensory  aspects,  and  cognition.  Only  a  few
adverse events (including seizures and hyperactivity) were observed, and these were
controlled with medications[181]. It has been reported that cerebral hypoperfusion or
insufficient blood flow in the brain occurs in many brain regions in ASD[182],  and
interestingly,  their study suggested that the cell  transplantation may have had a
balancing  effect  on  the  brain  metabolism[181].  Comparative  Positron  Emission
Tomography-Computed Tomography scans before and 6 mo after cell transplantation
showed  increased  18F-fluorodeoxyglucose  uptake  in  the  areas  of  frontal  lobe,
cerebellum, amygdala, hippocampus, parahippocampus, and mesial temporal lobe[181].

Another small pilot open label study recently investigated the clinical benefits of
bone marrow aspirate concentrate stem cell with intrathecal transplantation in 10 ASD
children (4-12 years of age)[183]. The maximal effect of cell therapy was observed within
the  first  12  mo  following  the  treatment.  Interestingly  they  also  found  that
improvement decreased as the age of ASD child increased[183]. However, there was no
control group and the number of subjects in this study was quite small. Dawson et
al[184] conducted an open-label phase I clinical trial of a single intravenous infusion of
autologous UCB (AUCB) on 25 ASD children aged between 2 and 5 years. They found
that most of the significant improvements in behavior occurred during the first 6 mo
and were sustained between 6 and 12 mo post-infusion. Thus whilst a single therapy
did not improve all autistic symptoms, this work has demonstrated that it is safe and
feasible to perform AUCB infusions for the effective treatment of  ASD in young
children[184]. Dawson’s research team[185] performed a secondary follow up study and
reported changes in electroencephalography spectral power by 12-mo post-treatment
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Table 2  Autoimmune diseases, autism spectrum disorders, and mesenchymal stem cells

Autoimmune diseases ASD MSCs

Autoimmune thyroiditis + Pre-clinical experiment

Rheumatoid arthritis + Pre-clinical experiment; Clinical trials on-going

GVHD - Pre-clinical experiment; Clinical trials

MS - Pre-clinical experiment; Clinical trials on-going

Type 1 diabetes + Pre-clinical experiment; Clinical trials on-going

ASD: Autism spectrum disorders; MSCs: Mesenchymal stem cells; GVHD: graft-versus-host-disease; MS:
Multiple sclerosis; +: An association between ASD and a family history of autoimmune diseases; -: No or lack
of evidence of correlation between autoimmune diseases and ASD.

of AUCB on ASD children. Baseline posterior electroencephalography beta power was
positively associated with an improvement in social communication symptoms in
ASD children, suggesting the electroencephalography may be a useful biomarker to
predict the outcome of clinical trials for ASD.

Recently, the first randomized, double-blinded, placebo-controlled clinical trial
provided  further  evidence  that  AUCB was  safe,  but  there  was  minimal  clinical
efficacy compared to the findings of the previous open-label trial[186]. Twenty-nine
ASD  children  2-6  years  of  age  were  infused  with  either  AUCB  or  placebo,  and
evaluated at baseline, 12 wk, and 24 wk[186].  This study suggested that infusion of
AUCB has no serious adverse events for the treatment of ASD and potentially had an
impact on socialization for children with ASD.

While the clinical trials discussed above have generally reported a good safety
profile for MSC transplantation in ASD children, the follow-up checks are currently
only up to 12 mo after treatment. Thus caution should still prevail as no data of long-
term effects such as 5 to 20 years posttreatment are currently available.

CONCLUSION
Despite the increasing incidence of ASD, autism currently remains untreatable. The
available options of behavioral, pharmacological, and nutritional therapies are only
supportive treatments[84,187,188]. The underlying pathology of ASD involves immune
system dysregulation, autoimmunity, and inflammation[189], and these processes are
targetable with MSC therapy. MSCs can be transplanted directly without genetic
modification  or  pretreatment,  differentiated  according  to  the  cues  from  the
surrounding tissues, and do not cause uncontrollable growth or tumors[190]. Several
proof-of-concept clinical studies mentioned above and meta-analyses have shown the
safety  and/or  efficacy  of  MSCs  treatment  in  autistic  patients  or  other  clinical
conditions of immune dysregulation[180,181,184,190]. Although MSCs have the potential for
clinical use in ASD, a number of methodological, technical, and safety challenges still
need to be considered[191].  Additionally,  their  response to  other  pharmacological
interventions, tissue distribution upon administration, and their long-term safety
profile are key areas in need of further investigation. Currently, it is unclear how long
a single dose of MSC can sustain anti-inflammatory effects or when would be the
ideal  age  for  intervention  (the  early  the  better?).  Furthermore,  the  most  recent
randomized, double-blinded, placebo-controlled clinical trial, which had a much more
rigorous design than other clinical trials mentioned in this review reported lack of
efficacy of  AUCB for the treatment of  ASD. Given that  the long-term safety and
efficacy of MSC treatment cannot be fully ascertained, standardized trial design needs
to be considered when designing future clinical trials.

More  importantly,  our  understanding  of  basic  MSC  biology  and  underlying
etiology of ASD is still limited. Further basic research into endogenous functions of
MSC is warranted to elucidate the mechanism by which therapeutic MSCs for the
treatment of ASD mediate their action. Animal models such as the MIA and BTBR
mouse models may be vital for this as they allow the simultaneous measurement of
peripheral and central immune function, quantitative neuronal modification, and
behavioral  changes  in  response  to  MSC  treatment,  thus  enabling  a  better
understanding of the therapeutic mechanisms of MSCs in ASD.
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